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Introduction

▶ Competition is an important interaction which structures
many communities

▶ We want to understand how well competitive interactions
are explained by different theories: neutral, limiting
similarity, competitive hierarchy, intransitive loops, cause
versus effect,…

▶ One way to tease apart these theories is by estimating the
pair-wise competitive interactions between species at a
single trophic level within a community.



Introduction

λ11 λ12 . . .
λ21 λ22 . . .

...
... . . .


Matrix of competitive interactions, λij is the effect of species j
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Here we are going to measure the neighborhood
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Introduction

Estimating the full matrix of λ values is difficult. How have
others dealt with this?

▶ Canham et al. (2006) neighborhood competition index.
Frequentist likelihood to estimate λs for common
species-pairs and ignored rare ones.

▶ Uriarte et al. (2010) don’t estimate each λ, but tested
models with λ as a function of phylogenetic or trait-based
similarity between species.

▶ Tatsumi et al (2016) use a Bayesian hierarchal approach.
Tested different theories of competition which imposed
different structure on the λ matrix.



Hierarchal models

µλ

λ13λ12λ11 … λ21 …

µλ is a hyperparameter, this imposes the Hierarchal structure
on the λ values.
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Model formulation

Growth ∼ Norm(β0i + β1iDBH +
∑
j
λijBAj, σy)

Where i is the species of the focal individual, j is species of the
neighbor, and BAj is the sum of the basal area of individuals of
that species within 7.5 m of the focal individual.

Also have the
hyperparameters,

β0i ∼ Norm(µ0β, σ0β)

β1i ∼ Norm(µ1β, σ1β)

λij ∼ Norm(µλ, σλ)
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Different groupings

▶ To test different theories of competition we let the notion
of ‘species’ vary:

▶ Species
▶ Family
▶ A group based of species with similar functional traits

▶ We form our trait-based groups from height, specific leaf
area, and wood density. Kunstler et al. (2016) found these
were important to competition.

▶ Trait values taken from the TRY plant trait database
(Kattge et al. 2011).

.



Models to be compared

▶ Null: Each species gets its own response to competition.
λ is 33 × 1

▶ Trait grouped: Clustered species based on values for
those three traits and form six clusters. λ is 6 × 6

▶ Family: λ is 19 × 19
▶ Species: λ is 33 × 33



Model comparison

▶ Previous studies have used information theoretic criteria
to compare models (e.g., AIC or DIC). These compare the
likelihood of each model with a penalty for the number of
parameters.

▶ Here we will compare with out-of-sample prediction.
▶ Options for this are cross validation with folds of the data

or leave one out.
▶ We take a spatial fold approach because LOO would be

too computationally intensive.



Cross validation scheme
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Big Woods plot at the Edwin S. George Reserve

▶ Edwin S George Reserve, 500 ha, in southeast Michigan.
Administered by the University of Michigan.

▶ Big Woods plot is 23 ha, all stems greater than 1 cm DBH
tagged, identified and mapped. >40,000 stems.

▶ Censuses in 2003 (only 12 ha), 2008, and 2014.
▶ Part of the Smithsonian Institute’s ForestGEO network of

plots.
▶ Oak-hickory dominated canopy: Quercus
rubra, Q.
velutina, Q.
rubra
x
velutina, Q.
alba, Carya
ovata, C.
cordiformis, and C.
glabra.

▶ Subcanopy dominated by Acer
rubrum and Prunus
serotina.



Stem size distribution
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Oak decline in the plot

Proportion of stems >20 cm DBH belonging to each taxon over
the three censuses:

2003 2008 2014
Black/red oak 0.40 0.36 0.33
White oak 0.21 0.20 0.19
Black cherry 0.14 0.16 0.17
Red maple 0.11 0.12 0.15
Hickories 0.09 0.09 0.09



Big Woods plot at the Edwin S. George Reserve

Here we will model the diameter growth between 2008 and
2014 based on a focal tree’s neighbors in 2008. There are
21,065 stems of 33 species.



RStan

▶ Bayesian methods lend themselves well to hierarchical
models.

▶ With Bayesian models, it’s often difficult to compute
analytic estimates of all parameters

▶ Instead, Markov Chain Monte Carlo (MCMC) methods
draw a random sample from the posterior distributions of
parameters. For example: the empirical mean of such a
sample approximates the true posterior mean.

▶ “Bayesian inference Using Gibbs Sampling” (BUGS) was
long the de facto tool for MCMC.

▶ Stan is a new alternative
▶ Uses Hamiltonian MCMC instead
▶ Is supported across many platforms: R, Python, MATLAB,

Julia, Stata
▶ Rstan (Stan Development Team 2016)



Priors

We use wide, uninformative priors for the hyperparameters.

µ0β ∼ Norm(0, 100)
µ1β ∼ Norm(0, 100)
µλ ∼ Norm(0, 100)
σy ∼ Uniform(0, 10000)

σ0β ∼ Uniform(0, 10000)
σ1β ∼ Uniform(0, 10000)
σλ ∼ Uniform(0, 10000)
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Actual versus out-of-sample predicted
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Model results comparison

Null Trait groups Family Species
MAE 0.130 0.128 0.126 0.127
MSE 0.069 0.068 0.067 0.067
Slope 0.126 0.156 0.156 0.161
R2 0.095 0.108 0.105 0.109



Example posterior estimate of λ
For the null model with a 33 × 1 λ-matrix.
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Example posterior estimate of λ
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Estimates of λs from the family model
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Conclusions, limitations, possible extensions

▶ Conclusions
▶ Powerful approach to estimate competition coefficients.
▶ Interesting that we did not see the importance of traits that

others did (Uriarte et al. 2010, Kunstler et al. 2016)

▶ Limitations
▶ This approach does not directly measure competition.
▶ Could be seeing some other spatial signal going on.

Maybe black cherry individuals grow in favorable locations.
▶ Possible extensions

▶ Similar formulation for effect of neighbors on survival. (e.g.,
Lasky et al. 2014) or recruitment

▶ Two-level hierarchal structure
▶ Extend to other CTFS ForestGEO plots.
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