Topics
Exam Week Schedule
- Office Hours: Mon 5/15 1pm-4pm
- Office Hours: Tue 5/16 9am-12pm and 1pm-2pm. Only sporadic access to Slack until Midterm III.
- Midterm III: Fri 5/19 7pm-10pm in Warner 506
- Office Hours: Sun 5/21 1pm-5pm
- Office Hours: Mon 5/22 1pm-5pm
- Final Project Due: Tue 5/23 12pm. See Final Project Guidelines.
- Exit survey posted here.
4. Regression
- Lec41 - Mon 5/15: Midterm III Review + Course Response Evals
- Lec40 - Fri 5/12: Multiple Regression Part II
- Lec39 - Thu 5/11: Multiple Regression
- Lec38 - Wed 5/10: Categorical Predictors
- Lec37 - Mon 5/8: Least-Squares Line + Regression Output
- Lec36 - Thu 5/4: Correlation
3. Statistical Inference
c) Confidence Intervals
- Lec35 - Wed 5/3: Confidence Intervals in General
- Lec34 - Mon 5/1: Confidence Intervals
- Lec33 - Fri 4/28: Sampling Distributions and Standard Errors
- Lec32 - Thu 4/27: Back to Sampling
- Lec31 - Wed 4/26: Background Statistical Theory
b) Hypothesis Testing
- Lec30 - Mon 4/24: Finishing Hypothesis Testing
- Lec29 - Thu 4/20: Permutation Test
- Lec28 - Wed 4/19: Constructing the Null Hypothesis
- Lec27 - Mon 4/17: Tying Hypothesis Testing with Sampling
- Lec26 - Fri 4/14: p-Values
- Lec25 - Thu 4/13: Hypothesis Testing Framework and Terminology
- Lec24 - Wed 4/12: Going over Midterm II
- Lec23 - Mon 4/10: Midterm II Review
- Lec22 - Fri 4/7: Lady Tasting Tea
a) Probability Background
- Lec21 - Thu 4/6: Confounding Variables and Designed Experiments
- Lec20 - Wed 4/5: Introduction to Sampling
- Lec19 - Mon 4/3: Intro to Probability via Simulation
- Lec17 - Wed 3/22: Intro to Sampling Terminology
2. Data
e) Putting It All Together
- Final Project: Guidelines.
- Lec18 - Fri 3/24: The tao of data analysis.
d) Importing Data
- Lec16 - Mon 3/20: Importing Data
c) Manipulation AKA Wrangling
- Lec15 - Fri 3/17: 5MV#5
arrange()
& _join
- Lec14 - Thu 3/16: 5MV#3
group_by()
& 5MV#4 mutate()
- Lec13 - Wed 3/15: Piping
%>%
, 5MV#1 filter()
& 5MV#2 summarize()
- Lec12 - Mon 3/13: Intro to Data Wrangling + Intro to R Markdown
b) Visualization
- Lec11 - Thu 3/9: 5NG#5 Barplots. We deconstruct boxplots i.e.
geom_bar()
.
- Lec10 - Mon 3/6: Midterm I Review
- Lec09 - Thu 3/2: 5NG#4 Boxplots. We deconstruct boxplots i.e.
geom_boxplot()
.
- Lec08 - Wed 3/1: 5NG#3 Histograms + facets. We deconstruct histograms i.e.
geom_histogram()
+ We introduce the technique of faceting.
- Lec07 - Mon 2/27: 5NG#2 Linegraphs. We deconstruct linegraphs i.e.
geom_line()
.
- Lec06 - Fri 2/24: 5NG#1 Scatterplots. We deconstruct scatterplots i.e.
geom_point()
.
- Lec05 - Thu 2/23: More 5NG. Instead of reverse engineering graphics using the grammar, we now forward engineer them.
- Lec04 - Wed 2/22: 5NG. Constructing statistical graphics in a ‘grammatical’ fashion and introducing the Five Named Graphs.
a) Representation
- Lec03 - Mon 2/20: Tidy Data. A common way of representing data
- Lec02 - Thu 2/16: R Packages. Extending R’s base functionality with packages.
- Lec01 - Mon 2/13: Introduction. We discuss the syllabus, the pedogical thinking behind its design and introduce R, RStudio, and DataCamp.