Fit a Bayesian linear regression model with interactions terms where $$y = X \beta + \epsilon$$

\(\mu\)mean hyperparameter vector for \(\beta\) of length \(p + 1\)
\(V\)covariance hyperparameter matrix for \(\beta\) of dimension \((p + 1) x (p + 1)\)
\(a\)shape hyperparameter for \(\sigma^2 > 0\)
\(b\)scale hyperparameter for \(\sigma^2 > 0\)
comp_bayes_lm(focal_vs_comp, prior_param = NULL, run_shuffle = FALSE)

Arguments

focal_vs_comp

data frame from create_focal_vs_comp()

prior_param

A list of {a_0, b_0, mu_0, V_0} prior hyperparameters. Defaults to a_0 = 250, b_0 = 250, mu_0 a vector of zeros of length \(p + 1\), V_0 an identity matrix of dimension \((p + 1) x (p + 1)\)

run_shuffle

boolean as to whether to run permutation test shuffle of competitor tree species within a particular focal_ID

Source

Closed-form solutions of Bayesian linear regression doi: 10.1371/journal.pone.0229930.s004

Value

A list of {a_star, b_star, mu_star, V_star} posterior hyperparameters

See also

Other modeling functions: create_bayes_lm_data(), predict.comp_bayes_lm(), run_cv()

Examples

library(dplyr) # Load in focal versus comp data(focal_vs_comp_ex) comp_bayes_lm_ex <- focal_vs_comp_ex %>% comp_bayes_lm(prior_param = NULL, run_shuffle = FALSE)