This function carries out the bayesian modeling process with spatial cross-validation as described in Allen and Kim (2020). Given a focal-competitor data frame, it appends a column with predicted growth values.

run_cv(
  focal_vs_comp,
  comp_dist,
  blocks,
  prior_param = NULL,
  run_shuffle = FALSE
)

Arguments

focal_vs_comp

data frame from create_focal_vs_comp()

comp_dist

Distance to determine which neighboring trees to a focal tree are competitors.

blocks

An sf object of a blockCV block output

prior_param

A list of {a_0, b_0, mu_0, V_0} prior hyperparameters. Defaults to a_0 = 250, b_0 = 250, mu_0 a vector of zeros of length \(p + 1\), V_0 an identity matrix of dimension \((p + 1) x (p + 1)\)

run_shuffle

boolean as to whether to run permutation test shuffle of competitor tree species within a particular focal_ID

Value

focal_vs_comp with new column of predicted growth_hat

See also

Other modeling functions: comp_bayes_lm(), create_bayes_lm_data(), predict.comp_bayes_lm()

Examples

run_cv( focal_vs_comp_ex, comp_dist = 1, blocks = blocks_ex )
#> # A tibble: 6 × 8 #> focal_ID focal_sp dbh foldID geometry growth comp #> <dbl> <fct> <dbl> <fct> <POINT> <dbl> <list> #> 1 2 american_beech 20 1 (1.5 2.5) 0.800 <tibble [2 × 4]> #> 2 3 sugar_maple 15 1 (1.75 2.25) 1.00 <tibble [1 × 4]> #> 3 4 american_beech 12 1 (3 1.5) 0.400 <tibble [1 × 4]> #> 4 5 sugar_maple 35 1 (3.25 1.75) 1.40 <tibble [1 × 4]> #> 5 7 sugar_maple 22 2 (8 1.5) 0.600 <tibble [3 × 4]> #> 6 9 sugar_maple 42 2 (8.75 1.5) 1.40 <tibble [3 × 4]> #> # … with 1 more variable: growth_hat <dbl>